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Luke’s (1967) variational formulation for surface waves is extended to incorporate 
the motion of a wavemaker and applied to the cross-wave problem. Whitham’s 
average-Lagrangian method then is invoked to obtain the evolution equations for 
the slowly varying complex amplitude of the parametrically excited cross-wave that 
is associated with symmetric excitation of standing waves in a rectangular tank of 
width nlk, length 1 and depth d for which kl = O(1) and kd 9 1. These evolution 
equations are Hamiltonian and isomorphic to those for parametric excitation of 
surface waves in a cylinder that is subjected to a vertical oscillation, for which phase- 
plane trajectories, stability criteria and the effects of damping are known (Miles 
1984a). The formulation and results differ from those of Garrett (1970) in 
consequence of his linearization of the boundary condition a t  the wavemaker and his 
neglect of self-interaction of the cross-waves in the free-surface conditions (although 
Garrett does incorporate self-interaction in his calculation of the equilibrium 
amplitude of the cross-waves). These differences have only a small effect on the 
criterion for the stability of plane waves, but the self-interaction is crucial for the 
determination of the stability of the cross-waves. 

1. Introduction 
Cross-waves are induced by a symmetric wavemaker in a rectangular channel 

when the frequency of excitation approximates twice one of the resonant frequencies 
of the transverse standing-wave modes and the amplitude of excitation exceeds a 
certain threshold. The problem is one of parametric resonance, in which energy is 
transferred from the symmetric (with respect to the vertical mid-plane of the 
channel) motion to the antisymmetric cross-waves through nonlinear interactions. 
It has been studied by Garrett (1970) on the assumption of standing waves in a short 
tank (length 5 breadth) and by Mahony (1972) and Jones (1984) on the assumption 
of progressive waves in a long tank (length D breadth). Both Garrett and Mahony 
linearize the boundary condition at the wavemaker and neglect the self-interaction 
of the cross-waves in the free-surface conditions (although Garrett does incorporate 
self-interaction in his calculation of the equilibrium amplitude of the cross-waves). 
The former approximation appears to have only a small effect, and the neglect of self- 
interaction no effect, on the criterion for the stability of plane waves (cf. Jones), but 
self-interaction is crucial for the determination of the stability of the cross-waves. 

The somewhat simpler problem of parametric excitation of cross-waves through 
vertical oscillation of a channel has been studied by Larraza & Putterman (1984) and 
Miles (1984b). I used Whitham’s (1974) average-Lagrangian method and obtained 
results in quantitative agreement with the observations of Wu, Keolian & Rudnick 
(1984), although only after incorporating capillarity and dissipation. Whitham’s 
method avoids many of the complications of a secular perturbation solution, such as 
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those of Larraza & Putterman and Jones. I present here the application of that 
method to the cross-wave problem. 

Following Garrett (but with independent notation), I consider the excitation of 
gravity waves of free-surface displacement g in a rectangular tank of width b ,  depth 
d and length 1 in response to the wavemaker motion 

II: = ~ ( z ,  t )  = af(z) sin2wt (0 < y < b,  -d  < z < <) (1 .1)  

ka = E 4 1 ,  kd % 1 ,  k l =  O(1) (k = x / b ) .  (1.2) 

on the assumptions that 

It is evident from symmetry that the boundary-value problem admits a plane-wave 
(y-independent) solution ; however, nonlinearity may couple energy into cross-waves 
if w approximates one of the natural frequencies 

w, = (ngk); (n = 1,  2 ,  ..., kd % 1).  (1.3) 

I assume that w approximates w1 according to 

which determines the bandwidth of the hypothetical resonance. If w x w ,  (n = 2, 3, 
. . .) i t  is necessary only to replace k by nk in (1.4) and subsequently. The dominant 
effect of a small surface tension T is to raise the natural frequency, with the result 
that w t  and k in (1.4) are multiplied by 1 + p ,  where 

This correction may imply 0(1) effects for E 4 1, whereas the remaining effects of 
small surface tension are uniformly 0(9) relative to unity. 

The free-surface displacement of the hypothetical cross-wave, which is super- 
imposed on the plane wave, may be posed in the form 

5 = emuB{(p + iq) ePiwt} 1 / 2  cos ky + o(emu),  (1.6) 

where p + iq is a dimensionless, slowly varying complex amplitude. The principal aim 
of the analysis is to determine the evolution equations for ( p ,  q) ,  which, in turn, 
determine the stability, or otherwise, of the underlying plane-wave motion. If k1= 
O ( l ) ,  as in the present analysis, m = -a, so that the cross-wave dominates the plane 
wave, and the slow timescale is ~ / E w .  If kl = O(l / s ) ,  as is implicit in the analyses of 
Mahony (1972) and Jones (1984), m = 0, so that the cross-wave and the plane wave 
have similar magnitudes, the slow timescale is l / e 2 w ,  and p +  iq also exhibits a spatial 
variation with the lengthscale l / e k .  

I begin my analysis, in $2, by extending Luke’s (1967) variational formulation for 
surface waves to  the wavemaker problem (or to  other problems with moving 
boundaries) and transforming his Lagrangian to the sum of integrals over the free 
surface and the wavemaker plus a volume integral that  vanishes if the trial function 
for the velocity potential q5 satisfies Laplace’s equation. In  $3, I derive appropriate 
trial functions for fi and the free-surface displacement 6 by combining Havelock’s 
(1929) solution of the basic wavemaker problem with Rayleigh’s (1915) solution of 
the nonlinear standing-wave problem. I then calculate the average Lagrangian in $4 
and the corresponding evolution equations in $5. The resulting system is Hamiltonian 
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and, through a canonical transformation, isomorphic to the Hamiltonian system for 
parametric excitation of surface waves in a cylinder that is subjected to a vertical 
oscillation (Miles 1984a). My stability criterion for the plane-wave motion differs 
from Garrett's (1970) in consequence of his linearization of the boundary condition 
at the wavemaker; moreover, I obtain quantitative stability criteria for the cross- 
waves and phase-plane ( p ,  q )  trajectories and incorporate weak damping. 

The only experimental results for cross-waves in a short tank of which I am aware 
are those of Lin & Howard (1960).f Both Garrett's and the present analytical results 
predict cross-wave-equilibrium amplitudes (or, equivalently, resonant frequency 
shifts) ws. wavemaker amplitude (see Garrett's figure 2) in qualitative agreement 
with Lin & Howard's measurements. 

2. Variational formulation 

the wave tank described in $ 1  leads to the boundary-value problem 
The assumption of motion started from rest in an incompressible, inviscid fluid in 

V $ = O  ( x < x < l ,  O < y < b ,  - d < z < [ ) ,  (2.1) 

= C,+V$.VL $,+t(V$)"gC = 0 (2 = Y), (2.2a, b )  

$z = 0 (x = l ) ,  $v = 0 (y = 0, b ) ,  $z = 0 ( z  = -a), (2.3a, 6 ,  c) 

for the velocity potential $(x, y, z ,  t )  and the free-surface displacement {(x, y, t ) ,  
where the subscripts x, y, z, t signify partial differentiation. The boundary condition 
( 2 . 3 ~ )  is imposed a t  z = 00 (deep-water waves )in $53-5. 

The boundary-value problem (2.1)-(2.4) may be deduced from the variational 
principle 

&J = 0, J E  i d t ,  (2.5a, b )  s 
where J is the action integral of the Lagrangian (Luke 1967) 

and the volume integral is over the domain bounded by the wavemaker (x = x), the 
free surface ( z  = {) and the fixed boundaries (x = 1, y = 0, b and z = -a). The proof 
follows Luke (1967) and Whitham (1974) after allowing for the motion of the 
wavemaker. Invoking the identities (the second of which is Green's theorem) 

(2.7) 

t Barnard & Pritchard (1972) have carried out extensive experiments for cross-waves in EL long 
(kl  = 0 ( 1 / ~ ) )  tank. 
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where S is the bounding surface, n is the inwardly directed normal to S, and $n  is the 
normal derivative, we obtain 

Invoking the requirement &J = 0 for variations 84 and 8C that vanish at the temporal 
end points of the action integral J but are otherwise arbitrary, we obtain (2.1)-(2.4). 

An equivalent Lagrangian, which typically is more convenient for computation, 
may be derived from (2.6) by transforming the integrals of $t and +(V$)2 through the 
replacement of d$ by q5 in (2.7) and (2.8) and invoking Gauss's theorem to obtain 

where F is the free surface and W is the wavemaker. The end result is 

L = i+a,(J[$ dV-&pi2b[Z-X(-d, t)] 

(2.10) 

(2.11a) 

The difference L-L makes a null contribution to &J, by virtue of which 8s L dt = 
0 also implies (2.1)-(2.4).? Expressing $n  and n, in Cartesian coordinates on F and 
W and assuming that $n = 0, i.e. (2.3), is satisfied on the remaining boundaries, we 
obtain 

L = 2 1 dy { J/$V2q5 dx dz + lo [$(2Ct - + Vq5 - VC) - gC'%=~d~ 

where xo(y, t )  and zo(y, t )  are the coordinates of the intersection of the wavemaker 
(x = x) and the free surface ( z  = 5). 

3. Trial functions 
We posit the trial functions 

($)$A = s $ o + E ~ $ l + € $ l l + O ( € ~ ) ,  (3.1 a)  

hg = 6 C O  + €i 5, + ECll  + O( 6%) , (3.1 b )  

where the dimensionless variables ( $ o ,  Co) represent the first-order (linear) plane- 
wave solution of (2.1)-(2.4), (q51, C1) represent the first-order cross-wave solution, and 

It suffices for the present calculation to know that the first-order plane-wave 
Cll) represent the second-order interaction of (q51, 5,) with itself. 

solution (cf. Havelock 1929) is independent of y and satisfies 

~ o z z . + q 5 o z r  = 07 ( 3 4  
t It is evident that (2.11) is relevant to  other moving-boundary problems -e.g. a floating 

body. 
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= 2 ~ f ( z )  cos2ot (x = 0) ,  l:$02 lzs0 dx = 2 ~ [ ~ f ( z )  dz cos2wt (3.3a, b) 

within 1 + O ( E )  ((3.3b) follows from continuity; cf. Garrett 1970). 
The second-order cross-wave solution of (2.1)-(2.3) for k = K may be inferred from 

Rayleigh’s (1915) second-order solution for two-dimensional (y, z in the present 
context) standing waves. Matching Rayleigh’s result to (1.6), we obtain 

$1 = d/2AO(8;7)  coskyeL2, 5, = 2/2A(8;7) cosky, (3.4a, b) 

#11 = -AAO, Cll = A’ C O S ~ ~ Y ,  (3.5a, b )  

where A(0,  7 )  = p(7) cosO+q(7) sin0 = 9{(p+iq) (3.6) 

and e =  wt, 7 =  (3.7a, b) 

4. The average Lagrangian 
We next substitute the trial functions (3.la,  b) into (2.12) and average the result 

over 0 with 7 fixed to obtain the average Lagrangian ( L )  as a functional of p and q. 
The volume integral vanishes by virtue of V2 (3.la) = 0, so that we need consider 
only the surface integrals. In evaluating these integrals, it is expedient to separate 
out the contributions of the end points through the approximation 

lo [ 1 dx = [ 1 dx-xo[ 1%-0 + O ( X 3  (4.1) 

and similarly for the integral over the wavemaker. 
Considering first the free-surface integral, replacing ct by Ct + EOC, (this is the only 

term in L in which the 7-derivative is significant in the present approximation), 
regrouping the terms in the integrand, averaging over 0, and invoking (3.2)-(3.7) and 
zo = ~ ( 0 ,  t )  [1 + O ( E ~ ) ] ,  we obtain 

+ (W191,(9l 511, + 291 Cl 51, + 911 Cl,) - (kV1(91  ClO-mf(0) sin 20) (4.2a) 
2-0 

= (0) + &a2bl @q -pa + p(p’ + qz) + 8(pz + q2)2 + I-’ (4.2b) 

where, here and subsequently, error factors of 1 +O(E$ are implicit, (0) stands for 
terms that depend only on the plane-wave solution (and therefore are independent 
of p and q), @ = dp/dT, and 

[ ( r , f + q I ’  

is a measure of the proximity to resonance (cf. (1.4)). Small surface tension may be 
incorporated by multiplying k and u: by 1 +@ ; see (1.5). 

5 FLM 186 
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Turning to the integral over the wavemaker and invoking xo = and the 
implicit satisfaction of (2.4) by #,,, we obtain 

(4.4b) 

Combining (4.2) and (4.4) in ((2.12)) and subtracting out the plane-wave ( p  = q = 
0) Lagrangian Lo, we obtain 

(4.5a) 

where H = H P 2  + !12) +P* Pq +&(P2 + q2)’ (4.56) 

and P* = f ( z )  dz+(4rl)-’[ l m f / ( x )  eZKz dz-2f(0) 1 . (4.6) 
l --m 

We remark that, although the implicit error factor in (4.5a) is l + O ( & ) ,  the 
corresponding error factor in the subsequent evolution equations is 1 + O(s)  by virtue 
of the variational principle that the error in 8 J ” 9  d r  is of the order of the square of 
the error in the trial function. 

The parameter P* is a measure of the energy transfer from the wavemaker to  the 
cross-waves. The first integral in (4.6) is derived equally from the wavemaker and 
from the integral of ( $oz 45, cl) over the free surface (the corresponding energy is, of 
course, derived originally from the wavemaker) through the equality (3.3 b )  ; the 
remaining terms are derived from the wavemaker. We may assume P* > 0 without 
loss of generality, since, from (4.6), P*+-P* is equivalent to f ( x ) + - f ( z ) ,  which, 
from ( l . l ) ,  is equivalent to wt+ wt+;n. Evaluating the integrals for a flap hinged a t  
z = - d ,  for which x 

f ( ~ )  = 1 + -  ( - d  < z < 0 ) ,  (4.7) 

we obtain 2KlP* = (4Kd)- ’ (2~d - 1)‘. (4.8) 

d 

The fraction of the total energy transfer that is derived from the free surface (see 
above) is @ ~ d / ( 2 r d -  1)12, which exceeds for Kd > 2 (4nd > 6 ) .  

5. Evolution equations 

q,  we obtain the evolution equations 
Requiring J” 9 d r  to be stationary with respect to independent variations of p and 

(5.la) 
. dH 

p = - - -  - - P* P - [P+ 2(P2 + q2)1 q 
aq 

aP 
(5.1 b) 

in which H appears as a Hamiltonian and p and q are canonically conjugate 
variables. It follows that H is a constant of the motion, by virtue of which the general 

dH 
and q=--=*q+[P+acP2+q2)lP, 
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solution may be reduced to quadrature through the introduction of action-angle 
variables (which lead to elliptic integrals ; cf. Miles 1 9 8 4 ~ ) .  

The fixed points of (5 .1) ,  at  which p = q = 0 and the wave motion is harmonic, are 
given by 

p = q = o ,  ( 5 . 2 ~ )  

(5 .2b)  

and P = q = &[-2(P*+P)I$ (P < -P*) ( 5 . 2 ~ )  

The assumption of small disturbances, proportional to exp (h7), with respect to these 

A2 = p2,-p2, ( 5 . 3 ~ )  fixed points yields 

h2 = 4P*(P-P*) (P < P*) (5.3b) 

P = -q = f P(P* +)I; (P < P*) 

and A2 = 4P*(-P-P*) (P < -P*L (5.3c) 

respectively. It follows that the fixed point at p = q = 0 (plane-wave motion without 
cross-waves) is stable/unstable for P2 2 P: and that those of (5 .2b/c)  are stable/ 
unstable. Both plane-wave ( p  = q = 0) and cross-wave (with p ,  q given by (5.2 b ) )  
motion are stable for P < -P*, and which is realized depends on the initial 
conditions. 

The criterion P2 > ,8: for stability of the plane-wave solution is equivalent in form 
to that determined by Garrett (1970), but he obtains 

(5 .4)  

in place of (4 .6)  in consequence of his linearization of the boundary condition at  the 
wavemaker. The difference between (4 .6)  and (5 .4)  for a flap hinged a t  z = - d  is 
(b2/87c21d), which is typically small ; however, this difference would be larger for a flap 
hinged closer to the surface. 

The details of the phase-plane trajectories implied by (5.1)-(5.3) may be inferred 
from those for Faraday resonance of surface waves in a cylinder that is subjected to 
a vertical oscillation. The canonical transformation (which is equivalent to a scale 
change and a &r phase shift of the complex amplitude) 

P = ( 2 P , ) V - & ) ,  q = ( 2 P * ) V + & ) ,  7 = AIT, (5.5a, b, c )  

( 5 . 6 ~ )  
carries (4 .6)  over to 

5? = 4P2, [ W T  Q-PQT) +me &)I 
and (5.6b) 

which is equivalent to the corresponding system for the Faraday-resonance problem 
(Miles 1984a) with P replaced by therein. Invoking this equivalence, we find 
that the fixed points may be classified as follows (see figure 2 in Miles 1 9 8 4 ~ ) :  

(a )  p > P*, centre a t  p = q = 0;  
(b)  -P* $ P  < P*, saddle point a t  p = q = 0 and two centres a t  p = - q  = 

(c)  ,8 < -@*, three centres a t  p = 4 = 0 and p = - q  = + [ 2 ( p  - *  -p)] i  and two 
saddle points a t  p = q = +[-2(P* +/?)I" 

Weak dissipation (see below) will cause the phase-plane trajectories to spiral into 
the centres, which correspond to stable plane-wave motion in (a )  and cross-wave- 

f M P *  -P)15 

5-2 
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contaminated motion in (b ) .  The trajectories about p = q = 0 in ( c )  correspond to 
-(/3+/3*)z < H < 0, with H>O for the trajectories about the remaining centres. It 
follows, since H is determined by the initial conditions, that H 5 0 implies plane- 
WaveIcross-wave motion if /3 < -p*. 

The incorporation of weak, linear damping in the dynamical formulation leads to 
the introduction of a(p ,  q) on the left-hand sides of (5.la, b) ,  where (cf. Miles 

s 1984 a )  

8 ’  
(5.7) a = -  - 

and 6 is the ratio of actual to critical damping for the pure cross-wave (which, 
without excitation, would decay like exp (Sw, t ) ) .  We also introduce 

y = (pz, - a2)f. (5 .8)  

The fixed points then may be classified as follows if a < /3*: 
(a )  p > y , s i n k a t p = q = O ;  
(b )  - y < /3 < y ,  saddle point a t  p = q = 0 and two sinks a t  

where (5.10) 

( c )  /3 < - y ,  three sinks a t  p = q = 0 and a t  (5.9), and two saddle points a t  

p+iq = k 2  exp[i(+n++)] (-y-/3);. (5.1 1) 

The only fixed point for a > /3* is a sink a t  p = q = 0 - i.e. cross-waves will decay 
if 

(5.12) 

Conversely, cross-waves may occur in the appropriate ranges of /3 if a exceeds the 
threshold amplitude obtained by letting 6 = /3* E .  

I am indebted to Janet Becker for checking the calculation in $4 and to C. J. R. 
Garrett for several helpful comments. This work was supported in part by the 
Physical Oceanography Division, National Science Foundation, NSF Grant OCE-81- 
17539, by the Office of Naval Research, Contract N00014-84-K-0137,4322318 (430), 
and by the DARPA Univ. Res. Init. under Appl. and Comp. Math. Program 
Contract N00014-86-K-0758 administered by the Office of Naval Research. 
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